The role played by alternative splicing in antigenic variability in

Por um escritor misterioso
Last updated 10 novembro 2024
The role played by alternative splicing in antigenic variability in
Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host’s immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.
The role played by alternative splicing in antigenic variability in
INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell
The role played by alternative splicing in antigenic variability in
Bioconjugation Approaches to Producing Subunit Vaccines Composed
The role played by alternative splicing in antigenic variability in
Small variant surface antigens and Plasmodium evasion of immunity
The role played by alternative splicing in antigenic variability in
The Expanding Landscape of Alternative Splicing Variation in Human
The role played by alternative splicing in antigenic variability in
Dysregulation and therapeutic targeting of RNA splicing in cancer
The role played by alternative splicing in antigenic variability in
The role of alternative splicing in cancer: From oncogenesis to
The role played by alternative splicing in antigenic variability in
Diversification of antibodies after B-cells encounter antigen
The role played by alternative splicing in antigenic variability in
TCR-engineered T cell therapy in solid tumors: State of the art
The role played by alternative splicing in antigenic variability in
Frontiers Response: Commentary: An In Silico–In Vitro Pipeline
The role played by alternative splicing in antigenic variability in
Non‐coding RNAs in malaria infection - Lodde - 2022 - WIREs RNA
The role played by alternative splicing in antigenic variability in
Expression of human IgD by alternative splicing and CSR. (A) Ig
The role played by alternative splicing in antigenic variability in
IJMS, Free Full-Text

© 2014-2024 jeart-turkiye.com. All rights reserved.