Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a Crystalline π-Conjugated Polythiophene Core by Self-Seeding

Por um escritor misterioso
Last updated 24 dezembro 2024
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Water-Dispersible, Colloidally Stable, Surface-Functionalizable Uniform Fiberlike Micelles Containing a π-Conjugated Oligo(p-phenylenevinylene) Core of Controlled Length
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Extending the Scope of “Living” Crystallization-Driven Self-Assembly: Well-Defined 1D Micelles and Block Comicelles from Crystallizable Polycarbonate Block Copolymers
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Polymers, Free Full-Text
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Oxidation promoted self-assembly of π-conjugated polymers - Chemical Science (RSC Publishing) DOI:10.1039/D0SC00806K
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Uniform electroactive fibre-like micelle nanowires for organic electronics
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Synthesis and crystallization-driven solution self-assembly of PE-b-PMMA: controlling Micellar morphology through crystallization temperature and molar mass
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Precise Control of Two-Dimensional Hexagonal Platelets via Scalable, One-Pot Assembly Pathways Using Block Copolymers with Crystalline Side Chains
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Modulating the Molecular Geometry and Solution Self-Assembly of Amphiphilic Polypeptoid Block Copolymers by Side Chain Branching Pattern
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Branched Micelles by Living Crystallization-Driven Block Copolymer Self-Assembly under Kinetic Control
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Uniform π‐Conjugated‐Co‐Oligomer‐Based Nanofibers of Controlled Length with Near‐Infrared Emission, Photodynamic and Photothermal Activities - Ma - 2022 - Advanced Materials Interfaces - Wiley Online Library
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Rod–coil” copolymers get self-assembled in solution - Materials Chemistry Frontiers (RSC Publishing) DOI:10.1039/C9QM00444K
Uniform, High Aspect Ratio Fiber-like Micelles and Block Co-micelles with a  Crystalline π-Conjugated Polythiophene Core by Self-Seeding
Uniform two-dimensional square assemblies from conjugated block copolymers driven by π–π interactions with controllable sizes

© 2014-2024 jeart-turkiye.com. All rights reserved.